Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bacterial vaginosis (BV) is the most prevalent vaginal condition among reproductive-age women presenting with vaginal complaints. Despite its significant impact on women’s health, limited knowledge exists regarding the microbial community composition and metabolic interactions associated with BV. In this study, we analyze metagenomic data obtained from human vaginal swabs to generate in silico predictions of BV-associated bacterial metabolic interactions via genome-scale metabolic network reconstructions (GENREs). While most efforts to characterize symptomatic BV (and thus guide therapeutic intervention by identifying responders and non-responders to treatment) are based on genomic profiling, our in silico simulations reveal functional metabolic relatedness between species as quite distinct from genetic relatedness. We grow several of the most common co-occurring bacteria (Prevotella amnii, Prevotella buccalis, Hoylesella timonensis, Lactobacillus iners, Fannyhessea vaginae, andAerrococcus christenssii) on the spent media ofGardnerellaspecies and perform metabolomics to identify potential mechanisms of metabolic interaction. Through these analyses, we identify BV-associated bacteria that produce caffeate, a compound implicated in estrogen receptor binding, when grown in the spent media of other BV-associated bacteria. These findings underscore the complex and diverse nature of BV-associated bacterial community structures and several of these mechanisms are of potential significance in understanding host-microbiome relationships.more » « less
-
Rao, Krishna (Ed.)ABSTRACT Gardnerella is a frequent member of the urogenital microbiota. Given the association between Gardnerella vaginalis and bacterial vaginosis (BV), significant efforts have been focused on characterizing this species in the vaginal microbiota. However, Gardnerella also is a frequent member of the urinary microbiota. In an effort to characterize the bacterial species of the urinary microbiota, we present here 10 genomes of urinary Gardnerella isolates from women with and without lower urinary tract symptoms. These genomes complement those of 22 urinary Gardnerella strains previously isolated and sequenced by our team. We included these genomes in a comparative genome analysis of all publicly available Gardnerella genomes, which include 33 urinary isolates, 78 vaginal isolates, and 2 other isolates. While once this genus was thought to consist of a single species, recent comparative genome analyses have revealed 3 new species and an additional 9 groups within Gardnerella . Based upon our analysis, we suggest a new group for the species. We also find that distinction between these Gardnerella species/groups is possible only when considering the core or whole-genome sequence, as neither the sialidase nor vaginolysin genes are sufficient for distinguishing between species/groups despite their clinical importance. In contrast to the vaginal microbiota, we found that only five Gardnerella species/groups have been detected within the lower urinary tract. Although we found no association between a particular Gardnerella species/group(s) and urinary symptoms, further sequencing of urinary Gardnerella isolates is needed for both comprehensive taxonomic characterization and etiological classification of Gardnerella in the urinary tract. IMPORTANCE Prior research into the bacterium Gardnerella vaginalis has largely focused on its association with bacterial vaginosis (BV). However, G. vaginalis is also frequently found within the urinary microbiota of women with and without lower urinary tract symptoms as well as individuals with chronic kidney disease, interstitial cystitis, and BV. This prompted our investigation into Gardnerella from the urinary microbiota and all publicly available Gardnerella genomes from the urogenital tract. Our work suggests that while some Gardnerella species can survive in both the urinary tract and vagina, others likely cannot. This study provides the foundation for future studies of Gardnerella within the urinary tract and its possible contribution to lower urinary tract symptoms.more » « less
An official website of the United States government
